
UNCLASSI FIED

AD296 186

ARMED SERVICES TECHNICAL INFRIIAION ICENCY
ARLINGMN HALL SATIM
ARLINGO?4 12, VIRGINIA

UN-CLASSIFIED

NOTICE: When governent or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formilated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

0

UNCLASSIFIED

~ASTIA

@0 [FEB 15 1963

OMPUTER ASSOCIATES, INCORPORATED
FORTY.FOUR WINN STRET, VOBURN, MASS.

-iC

Best
Available

Copy

"Requests for additional copies by Agencies of the Department of
Defense, their contractors, and other Government agencies should be directed

to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or

have their 'need-to-know' certified by the cognizant military agency of their
project or contract."

"All other persons and organizations should apply to the:

U.S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D.C.

.1

d c OMPUTER ASSOCIATES, Inc. /Porty-p.ur Winn Street woburn. Maesaehusette * Wesll 1I-1

SUMMARY OF A METHOD FOR THEi AUTOMATIC CONSTRUCTION OF SYNTAX
DIRECTED COMPILERS

by
[1 Stephen Warshall

Computer Associates, Inc.
44 Winn Street

Woburn, Massachusetts

(1

Contract No. AF19(628)-419

11 Project No. 4641, Task 464102

Scientific Report No. 2

December, 1962

Report No. AFCRL-62-955

Electronics Research Directorate
Air Force Cambridge Research Laboratories

Office of Aerospace Research
United States Air Force
Bedford, Massachusetts

This report describes a recently developed technique for the rapid
realization of compilers for new source languages and new target machines.

The method is built around a table-driven translation algorithm,
which was announced some time ago*. This algorithm is embodied in a

small general-purpose (language- and machine-independent) program, called

the "Translator", which accepts strings of characters, syntactically

analyzes them, and emits pseudo-code macro-instructions, performing

arbitrarily complex investigations of syntactic context to decide this

emission.

jt The Translater is particularized to a given source-target pair by a

set of tables which define the syntax of the source language and the

strategy to be used in studying context and emitting macros. The newly-
developed technique consists of the creation of a readable, formal language

Ior describing both the syntax and the strategy of macro generation; thus,

Ithe Translater can, by translating a message in this new language, create

an Instance of its own tables.

This capability of the Translater is formally trivial and would be of

little interest, were it not that:

1 1. That portion of the language which defines syntax corresponds

very closely with the "Backus normal form" and can be trans,

fl literated almost directly from any conventional formal description

of syntax.
2. That portion of the language which deals with the strategy of

macro emission is fairly powerful and rather surprisingly

readable.

In the sequel, we first sketch the Translater algorithm sufficiently
well to Introduce the critical control tables. Then we describe the gross

*S. Wrshall, "A Syntax Directed Generator", Proceedings of the EJCC,
1961, Macmillan and Co., 1961.

[4

II

I strategy of the "bootstrap" operation and finally define the language in
which new compilers are defined to the bootstrap.

A pictorial representation of the syntax of the new language forItranslation description and a sample "program" in that language (describing

the translation of a conventional algebraic language) are supplied as

appendices.

I -2[1
ii
11

[I 2

j The Translater is a general-purpose program which accepts strings in

a source language, syntactically analyzes them, and emits a sequence of

messages (which we call "macros"); the selection and emission of these

messages may be triggered either by very local syntactic recognition or

by rather complex investigation of syntactic context.

The emission of a macro actually consists of two activities: the

construction of a macro descriptor and the call of a separate program (called

the In-Sequence-OptImizer, or "ISO") which accepts and processes the

descriptor.

The Translater is general-purpose in the sense that it is capable

of syntactic analysis of any of a wide class of languages and of imple-

menting any of a wide class of decision procedures for controlling macro

emission by investigation of syntactic context. This generality is achieved

by the use of tables which define the syntax of the source language and[1 tables which define the decision procedure. The Translater itself is a
relatively straightforward program which simply accepts a source language

1 message and uses the tables to process it.

The "syntax tables" may be viewed as a coded representation of

some standard formal definition of a language's syntax (for example, the

Backus notation). Similarly, the second set of tables -- which we will

call "generation strategy tables" -- iay be viewed as an encodement of

a class of statements defining the decision procedure. It is well known

that a common formalism may serve for the definition of any of the usual

Ii programming languages and thus the possibility of using a standard program,

with different tables for different languages, is clear. However, the

fJ existence of a convenient formalism for describing generation strategy--

and thus the possibility of a general-purpose algorithm controlled by a

tabular encodement of a strategy -- is by no means as obvious.

We have devised such a formalism, which is adequate to describe

fairly complex strategy more or less concisely.

The nature of the formalism in turn implies a table design and an
associated algorithm -- the "generator" -- controlled by the tables.

The essential trick in the development of this formalism is the

use of a tree-representation of the source-language message (which is
I the "natural" output of an analyzer). This tree-representation provides

a convenient domain over which to define both contextual constraint and
! macro emission.

The formalism for describing generation strategy is itself a lan-
guage -- "generation strategy language" -- and, in particular, a language
describable in the Backus notation. This suggests the interesting possibility
of a "bootstrap" compilation. That is, if one were to construct by hand-

1. A set of tables which define the syntactic structure of (say)
the Backus notation (BNF) and the generation strategy lan-

guage (GS L);

2. A set of tables which define the generation strategy for
inspecting tree-representations of BNF and GSL formulas and

emitting macros;
3. An algorithm which accepts these macros and interprets them

as orders to build lines of a set of translater control tables;

Then one might, by putting this latter program in place of the ISO,
use the compiler to create instances of the tables which control i.

1 In fact this is precisely what has been done. A program called
the "Bootstrap ISO" creates, by processing macros, a set of prototypes
of the control tables; then, after the entire BNF-GSL message has been

Uprocessed an additional set of algorithms converts these prototype tables
to final form. Since the actions performed by the Translater in executingU the bootstrap translation are a proper subset of those it is capable of
performIng, and since the bootstrap runs better if the Translater can do a
few things in a slightly different way, the Translater is "tuned" (slightly
altered) in the bootstrap version; however, it is essentially the same,
standard universal algorithm.

-2-

l1

i

The remainder of this report is divided into two sections. Section
A describes how the Translater works; Section B defines the bootstrap

Translater by sketching the function of the Bootstrap ISO and defining the

formalism BNFGSL-- the language which the bootstrap Translater in fact

JTtranslates.

-
U

i

11

-3-

I
The Storage of Syntax Rules1The formal languages in which we are interested may all be

described (to within some special trickery for certain "small" types,

like character strings) in the metalinguistics of the ALGOL 60 report*
which has been called "b.n.f." (for Backus normal form). That is,

each type is defined by a statement consisting of the name of the type

enclosed by the signs "<" and ">" followed by the sign "::=" followved

by a description of the alternative rules for forming the type, separated

rfrom each other by the sign "I". Each of these rules is in turn formed by

concatenating "components" in the order in which they must be found to

satisfy the rule. A component is given either by enclosing a type name in

the signs "e' and ">" or by explicitly giving the exact symbols of the source

alphabet to be recognized. Naturally, the metalinguistic signs are all

excluded from the source alphabet.

Thus, each type may for our purposes be viewed as given by a

Ii form like:
<type> oo= C1 C2 I C 1 C4 C5 I C3

where the C1 represent either types or specific strings of characters.

The right-hand side of such a statement may be represented by a

binary tree in which nodes correspond to components. The right son of a

node is the next component in the rule and the left son is the first compo-

jnent of the next alternative rule. Thus, the example would be represented

by:

0 3[(We will conventionally draw right sons to the right and left sons

below, in order to simplify layout.)

*"Report on the Algorithmic Language ALGOL 60", Naur(ed.) et al,

Communications of the Association for CgomDutina Machinery, Vol. 3,
No. 5, May, 1960

I
This naturally suggests the application of the distributive law to

shorten the stat ement and thus the tree. The right-hand side of the

example means, conceptually, C1 (C2 I C4 C) I C3

and the corresponding tree

03 C4C 5

is what we clearly wish the analyzer program to work with. After all, the

successful recognition of a Cl followed by a failure to recognize a C2
should lead directly to an attempt to recognize a C4 instead of a C2,

rather than a re-investigation of alternatives to the entire formation.

It sometimes occurs that one formation for a type looks precisely
like another followed by some additional component(s). Thus, we introduce

Ia special symbol into the tree, which indicates successful completion of
a formation even though a failure to continue it was encountered. Thisfmark, which we will designate by "T" and call the "terminal" mark, is

found only as a left son and may not have sons itself.
Example

IC C1 02 03 I C 1

r I CIC
[Remaik. It appears to be true of the source languages with which we are
dealing that one is always safe looking for the longest formation for a type

first and this assumption is made in order to shorten and simplify the
analyzer algorithm.]

Recursive Definitions
If the definition of a type R includes a formati.on whose first

component is R, we call that formation "left recursive"; we define "right

-2-

'I

j recursive" analogously. We specifically exclude any formation which

mentions R twice, although we permit an arbitrary number of formations of

R to mention R once. Left and right recursive definitions are not stored

as written, but are revised to eliminate explicit mention of R.
Let us assume that a definition has been appropriately reordered

so that it may be expressed as, for example:

1 2

T

'I IlO

T

The essential features of this reordering are as follows:
1. There is only one node No, representing R on the left; N

has no left son.
2. The tree is really two distinct trees connected through N1.

3. All nodes representing R (except for N) are in the upper
01tree with right sons of zero.

We process this tree as follows:

1. Take the right son of N (denoted N1).
2. Erase N (setting left son of its father to zero).

3. Take every node representing R; replace it by a "null type"

and set its right son to the trunk of the tree.

1 l4. Take every node whose right son is zero and set its right
son to N1 .

-3-

s>1
5. Take every node whose left son is T and set its left son to

N1 .

6. Beginning with N1 , take left sons until a node N2 is

encountered with left son of zero. Set left son of N2 to

T.
.The effect of all this processing is to command a re-Sntry of the

trunk for all right recursives until a successful formation has been effected.

Then, using the left recursive formations, efforts are made to extend It as

1 long as possible.

-4-

[I'
I

1 A.2.

The Storage of Generation Stratea,

I Generation strategy is stated in terms of the nodes of a tree

representation of a source language formula, and is composed as follows:

1. A set of rules for distinguishing kinds of node is given.

Nodes are naturally distinguished by the syntactic types

I they represent; they may be further distinguished by their

syntactic context.

2. Each distinct kind of node is assigned a short sequence of

commands. Each command either defines an action to be
performed (like, for example, the emission of a macro) or

names another node of the tree.

The generator algorithm starts at the trunk of the tree and walks

If from node to node, at each node pausing to execute a command assigned to

that kind of node, If the command indicates an action, that action is per-

formed; if it names another node, the ,generator moves to that node. Upon

each successive consideration of a node, the next command in that node's

sequence of commands is considered. Whenever a considered node has no

commands left, control moves automatically to the node's father in the tree.

Some actions have variables of call, which may be (am7ong

other things) the names of nodes of the tree. These names and the names

of nodes given as commands and the names of nodes given in the context

[descriptions are all expressed by "relative tree names" -- that is, by

rules for getting from any given point of the tree to some other. These rules

jj take the form of a sequence of steps. Each step is either the name of a

"neighbor" (e.g., FATHER, SON 3) or of some line item of a node.

Typical relative tree names might be:

FATHER * RTSIB * SON 2

SON 2 *SON 3 *SON 1
[At any given moment a relative tree name is interpreted with

respect to the node which the generator is currently considering.

1'

I A.3.

Organization of. the Translater Program

The Translater is controlled (after initialization) by a syntactic

analyzer called ANALYZ.

ANALYZ is entered with a syntactic "goal": to recognize some

specific syntactic type, starting at a specified character of the input

string. Initially, the goal is "program", or its equivalent, and the

starting character is the first. Every goal leads either to a new goal

U(if the current type is defined in terms of another type) or to an inspection

of the input to find either a specific symbol string (stored in SSLIST), one

of a finite set of specific symbol strings (stored in SSLIST), or one of a
class recognized by a special scanner (e.g.,an identifier or an integer).

When a goal is found to be impossible to meet, the analyzer consults the

syntax tables SYNTRE and SYNPT and either sets up an alternative goal at

the same point of the input string or, if there are none, backs up the

Fstring to try an alternative interpretation of previous material.

Whenever a syntactic type which has been marked as "big" enough

[to call the generator (see B. 5.) is completely recognized, a call on the

generator code, GENRAT, is made. During the course of recognition, a

tree-representation (OUTREE) of the structure of that syntactic type was

constructed.

GENRAT starts at the node (OUTREE line) which represents the

syntactic type which caused the GENRAT call. At each node which it

considers, GENRAT calls PREDIC to decide what kind of node it is.

IT The algorithm PREDIC, using two control tables, considers both

the syntactic type of the node and the nature of its context. The first

of these control tables, PREDPT, contains an entry of each different
kind of node. All kinds which are cases of the same syntactic type are

Hstored contiguously in PREDPT and are pointed to by the SYNPT line for

that type. Each line of PREDPT points in turn to the second conixol table,

PRDCAT, in which is stored a list of (contextual) predicates to be satisfied

before the node is adjudged to be of that kind. At the end of each list of

predicates in PRDCAT is a pointer to the list of activities for nodes of

that kind (see below).

Given PREDIC's result, GENRAT proceeds to do whatever need be
done at nodes of that type on the n-th occasion they are considered.

(GENRAT control keeps track of the current value of n for each node),

Lists of activities associated with different kinds of nodes are

found in the table SEQIST. These activities either consist of transfer

of consideration to another node or of a set of actions to be performed.

If the latter, the set of actions is listed in the table ACTION. If any

action has variables of call, these are listed in the table GVBLST. The

routine ACT controls the execution of required actions.

FSome actions involve the transmission of information to the

optimizer. This is generally accomplished by putting the information into

a communication table called SHPIST and calling the optimizer (ISO). Some

of this information requires a certain amount of interpretation before being

placed on SHPIST. The routine PUTVBL interprets certain kinds of encoded

variable descriptions (found in GVBIST) and places its result in SHPIST.

~-2-

Ii

[1 Organization of the Routines

ANALYZ

HERA

-3-

Ii Organization of the Control Tables

-4-

i The Lanauaae BNFGS L

The language BNFGSL is a vehicle for defining to a "universal"

compiler the particular translation it is to effect. A translater definition

written in BNFGSL falls naturally into two main sections: first, a formal
description of the source language, and second, a description of the

"generation strategy" for getting from recognized constructs in the source

language to corresponding computational commands.

The source language description controls a syntactic analysis
whose output is a tree representation of the recognized structure (called

OUTREE). When a "big" enough structure has been recognized, a call

upon agenerator is made. The generation strategy description is written

in terms of a walk through this tree and has, as its central notion, the

idea of a "relative tree name", by which we mean a rule for getting from
the current node of the tree to some other node.

I

I

I!
I --

B.I.

The Definition of a Source Lanauage

A language description is composed of a set of "type definitions"

each of which defines a single syntactic type of the source language.

In general, a syntactic type is defined by a set of "formations", or ways

Ito form a representative of that type from smaller structures. There may
be several alternative ways to form a type and thus a type definition may

Hf include several formations. Each formation is made up of a sequence of

"components" which are to be concatenated to satisfy the formation. A

component is either the name of some syntactic type or a fixed symbol

string.

In BNFGSL, we use arbitrary identifiers to denote the names of

H| syntactic types. Fixed symbol strings are written by the following rule:

First write the character "$". Then write the characters of the desired

symbol string, unless one of them is either "$" or "/" or a blank. In

the latter case, precede each such character by a "$". The entire string

is delimited by blank or "/". We begin a type definition by writing first

the name of the type being defined, then the character "=", then each

of the components of the first formation in order, then the character "I ",

then each component of the second formation, then another "/", and so on

until there are no more formations; then we write "//".

Examples:

MULOP =$*I$$/II
AREX = TERM /AREX ADOP TERM I/

In addition to the set of formations for the type, we require that

certain additional information be given as part of the type definition. This

additional material is given in the form of a list of "tags", separated by

commas, following the "//", and delimited by "I". The list of allowable

Itags and their meaning is as follows:

Ii

FIXIST - This type is defined by formations each of which has

I one component only, and that component is a fixed

symbol string.

TLUAn (where n is an integer) - This type is defined, not by

explicit formations, but by a special scanner --

specifically, the n-th such scanner.

F1 GENRAT - This type is big enough syntactically to warrant a

call upon the generator.

SINHIT - This type is such that, while the analyzer is

endeavoring to recognize it completely, no generation
I may occur (even if there is complete recognition of

types which normally cause generation).

METAGN - This type is such as to trigger a call upon the

generator; however, the purpose of that call is to

process a declaration rather than to produce any code.

ASSIGN - This type is such that once it has been completely

processed, any PRTECT's effected during its pro-

jj cessing may be disregarded (see discussion of
PRTECT, below).

INVOKE- Frequently, in the course of syntactic recognition, a

substantial tree structure will be built in OUTREE,

composed of a great many nodes of purely formal

interest buried among which is a single interesting
identifier. For example the simple construct "(A)"

Imight lead -- through the syntax of many familiar

languages --- to the structure:

-2-II

[

arithmetic expression

term

fact:or

(arithmetic expres sion)

term
I

factor

t
identifier: A

Later on, during generation, it would be convenient to minimize

investigation of this deceptively complex tree. The -analyzer can detect

these situations -- if given a few hints -- by carrying some of the

properties of the components of each formation up to the node of the type

being formed. The requisite hint is that those types which represent the

variables of discourse (identifiers, integers, and strings, for example)

Ior unary operators (addition operators, for example, if they may be unary)

be tagged with "INVOKE". This will, cause the automatic marking (during

j analysis) of each node as either "HARD" or "EASY" according as the

subtree trunked by that node does or does not include at least two nodes

of "INVOKE" type. Loosely speaking, "INVOKE types are such that exactly

those structures containing more than one of them require some code

generations.I NULTYP - A "null type" is a type with no formations and is

always successfully recognized without using up

any characters.

The "language definition" section of a translater definition consists

of a set of type definitions bracketed by the strings "BNF.." and "/BNF",

respectively

1 -3-

*1
11

B. 2.

The Structure of OUTREE

That structure in OUTREE which corresponds to any type

recognition may be deduced from its formations. Thus if a type is

* given by:

SA = BC /B C D / E/

and an A is in fact recognized, the resulting structure would be one of

the following:

C CD

That is to say, the sons of a node correspond, I - 1 and in order, to

the components of one of its formations, with two exceptions.

I. If a type is marked FIXST, nodes which correspond to it
will be terminal (have no sons).

1 2. If a formation is either left recursive or right recursive,

it will result in a "bush" of components at the same level

fin the tree, with no explicit mention of the recursive type.

Example:

ADOP= $+ / $ - /FIXLST/

AREX = IDENT/AREX ADOP IDENT///

leads to the following representation of "A + B + C - D":

[,

IDENT:A ADOP:+ IDE T:B ADOP:+ IDENT:C ADOP:- IDENT:D
(5) (0) (6) (0) (7) (1) (8)

I We refer to the nodes for the set of components of a type as the

"sons" of the node for that type, numbered from left to right. We call the

(n+l) son, the "right sibling" of the n . The meaning of "father" and

"left sibling" is the obvious one.

I

[b

The OUTREE actually contains a good deal of information at each

node in addition to a code for the syntactic type represented. Most of

this information is set and used by the compiler for its own internal

purposes. Some items however are either used or set (or both) as a

result of explicit indicators in the BNFGSL; these will be discussed below.

For the moment, we merely remark that one item of a node, called "NR",
always contains the appropriate one of the following:

1. The number of sons, if the node is not terminal.

2. The line number in the symbol table, the literal table,

or the table of fixed symbol strings, corresponding to the

node.

3. The relative number (starting with 0) of the formation,

if the node represents a fixed list (FIXIST type).

The parenthesized figures in the previously given tree are NR
values, assuming that "A", "B", "C", "D" are in lines 5, 6, 7, 8 of the

symbol table, respectively. Neither the identifiers themselves nor the

[BCD-representations of h+ and "-" are carried explicitly in the nodes.

I

I

r(

-2,-

t B. 3.
The Definition of a Generation Strategy

The "generator definition" section of a translater description is
composed of a set of "generation statements" bracketed by "GSL.." and

"/GSL", respectively.
.Each generation statement begins with a "condition" to be satis-

fied; then there follows (after a delimiting ", ") a set of activities to be

performed if the condition is satisfied. A condition begins with "IF"

followed by either the name of a syntactic type or a fixed symbol string.

[1 Then there may be an arbitrary number of additional "predicates" to be

satisfied. The different predicates are concatenated with "AND"s; that

is, they must jU be satisfied in order for the condition to be met.

There are six kinds of predicates, which are as follows (where,
by "<R >" we mean any representative of the type R and in particular, by
"<r.t.n.>" we mean any relative tree name):

Form Meanin
1. Zero test <r.t.n.> = 0 True, if the named node is

[1 on the tree.

<r.t.n.> X = 0 Converse

I 2. Syntactic type <r.t.n.> IS True, if the syntactic 1 3

test <identifier> of the named node is as

indicated.

3. Symbol test <r.t.n.> =True, if the named node is
<fixed symbol precisely the string indicated;

string> it is assumed that the node
will represent either a fixed

symbol string or some syntactic

type tagged with "FIXIST" or

11 an identifier.

Ii

1!

I Form Meanina

4. Complexity <r.t.n.> IS HARD Tests the named node for the

I test <r.t.n.> IS EASY property described in the

section on the tag "INVOKE",

above.

S. NR test NR(<r.t.n.>) = True if the NR field of the
<integer> named node has the indicated

value.

6. VTYP test VTYP(<r.t.n.>) = It would be convenient if

<integer> declared or encountered

proper.ies of the inde-tifiers

I could be discussed in BNFGSL.

In particular, it is essential

Ito be able to consider the
"variety" of the identifier

(function, packed item name,

or whatever), which is

presumed filled into the VARITY

item of the symbol table by
the declaration processors.

This test, which is well-

defined only if the named

Inode designates an identifier,
is true if the VARITY field of

11 the SYMTAB line number given

In the NR field of the named

Examples:
node has the required value..

IF TERM AND SELF IS HARD,

IF $(AND VTYP(PATHER*LFTSIB)= 6,

IF VARBLE AND SON2 X = 0 AND FATHER IS FACTOR,

-2-

'I

I If a given node satisfies several different conditions, it will be

treated as though it satisfied the first in order of appearance in the

FBNFGSL.
Following the condition and the delimiting "," is a "sequencing

1list" composed of an arbitrary number of "sequencing elements"' each

preceded by the character "$". The entire sequencing list is delimited

by a ". ".
A sequencing element is either a single relative tree name or an

"action list", by which we mean a set of "actions" to be performed.

Each action is given in functional notation- i.e., each is composed of

an "imperative" naming the action followed by a list of its variables of

call separated by commas and bracketed by a pair of parentheses. Actions

with no variables of call are given simply as imperatives.

I In order to understand the motivation) of this section of the language,

it is helpful to view the generator as at any time considering some

[particular node of OUTREE (initially that which triggered the GENRAT call).

It is this node with respect to which relative tree names are evaluated.

A node may be considered several times. When the generator considers

a node for the first time, it is determined whether that node satisfies

one of the conditions given in the BNFGSL. 1f it does, that node

is set up to perform the activities indicated in the sequencing list

associated with that condition. The first time that node iS considered,

it will perform whatever is indicated by the first sequencing element; the

second time, the second element; and so on. if an element is simply a

relative tree name, the generator will go on to consider the node named by

that element. Otherwise, the generator will cause the execution of all

the actions on the action list which comprises that element.

If a sequencing element is a relative tree name and if that name is

not well-defined with respect to the node currently being considered, the

generator moves to the next sequencing element.

If we have run out of sequencing elements for a node or if a node

never meets any condition in the first place, subsequent attempts to consider

-3-

Ii

that node will always lead to immediate consideration of its father. If that

I] node is the node which triggered generation, the automatic walk to jt

father is the signal which causes return of control to the analyzer.

SThe imperatives are as follows:

OUTPUT - This has a variable number of arguments, but at

least one; its effect is to throw out onto a communi-

cation table (SHPIST) all the arguments in order and

then execute a call upon the ISO. The first argument

position is conventionally used to transmit the name

of the macro-instruction being output. Thus,

OUTPUT(SWITCH, SON3, NR(SONS)).

PUTVLA - PUTVLA places its single argument in the first line

PUTVLB - of the communication table SHPLST. PUTVLB places

OUTPOT -) its single argument in the next free line of SHPIST.

OUTPOT acts like OUTPUT, except with no arguments.

Both PUTVIA and PUTVLB interpret their arguments am

values (see discussion of MINE, below).

PUTNAM - This places the OUTREE line number of its single

argument on the next free line of SHPIST.

LABEL - This causes the current point in the output to be

labeled with the identifier given by its single argument.

Example:

LABEL(S ON1)

MINE - Several imperatives (notably OUTPUT, PUTVLA, and

PUTVLB) give as arguments relative tree names whose

intended interpretation is as values. If a relative

tree name leads - to a terminal node denoting an

identifier, the interpretation is direct. If, however,

it leads to a non-terminal node, this may mean a

deferred reference to another terminal node (if the

non-terminal node is EASY) or may refer to the result

of a previously output computation. This means that

a certain amount of interpretation must be done

* Iautomatically by the generator. In order to provide

II -4-

I

I enough information to enable this interpretation,

the generator follows all executions of OUTPUT or

OUTPOT by marking the node whose consideration

directed the call with a code number for that line

Iof output. If later some relative tree name leads

to that node, the interpretive machinery will deduce

(by inspecting HARD-EASY codes, etc.) that this

node should have led to output and then obtain the

[output line number from it.

A difficulty arises when the node N with which

the output is to be associated for later interpretation

is different from the code N1 whose consideration led

to the output call. If the tree structure is simply

such that N is the trunk of the only interesting

subtree of the tree trunked by N, (by only "interesting",

fwe mean that nothing outside it contains any INVOKE

type codes), then the generator can quickly locate

f the interesting N1 and proceed. If this situation does

not obtain, however, some hint must be given the

generator. The action MINE has the effect of

associating, with the node currently under consideration,

the last line which was output.

Example.

IF AREX AND SELF IS HARD,

$ SONI $MINE.

The result of this would be that, no matter which

Hf node in the subtree trunked by the arex actually

output the last line in the computation of its value,

F] future interpretation of the arex node as a value would

correctly be set to the last line of output.

SET Two fields are associated with each node, which may

COPY be used.to transmit OUTREE line numbers from node to

H -5-II

II

rl
node. They are called "TRUE" and "FALSE",

[7 respectively, since they are used commonly to pass
around, within a boolean expression, the true and false

jump destinations. The ordered pair composed of these

two fields is called "TRUTAB".

[1 SET and COPY each has two arguments, of which

the first is either "TRUTH" or "FALSTY" for both

and "TRUTAB" for COPY only. The second argument

is, in all cases, a relative tree name. For SET, the

meaning is to set the value of the indicated field
(TRUE for TRUTH, FALSE for FAISTY) of the node

currently being considered to the OUTREE line

number obtained by evaluating the relative tree name).

For COPY, the meaning is to copy the designated

jfield in the named node into the corresponding field

of the node currently being considered.

IExamples:
SET (TRUTH, RTSIB*RTSIO)

ICOPY(TRUTAB, FATHER)

BEGRGN These bracket a "region"; by which we mean a

ENDRGN5 segment of code suitable in size and character as

a domain for special register assignment optimization.

I These imperatives take no arguments.

BEGLUP These bracket a region which is also a loop. Their

ENDLUP) effect upon the ISO is the same as that of BEGRGN

and ENDRGN, save that in addition a search is made

for invariant parts of the computation so that they

rI may be moved out of the loop. Noi arguments.

Ii -6-fi

BEGRTN These bracket a "routine", or file-able entity. No

1ENDRTN arguments.

BEGCND This pair brackets a section of a boolean expression
which may be Jumped around (if booleans are handled

by conditional transfers). Its purpose is to prevent

jthe common subexpression detectors in the 10 from

assuming that certain values which My be already

computed, a are. No arguments.

Example: (The brackets indicate possible Jumped-over

Fregions):
IF A EQ B+C OR B EQ C+DAND Z EQW+Y....

ji PRTECT - This imperative directs the ISO to prevent destruction

of the current value of its single argument (whioh mst

ibe A relative tree name denoting an identifier) until

that value is used. The purpoae of this device is to
protect against situations where embedded assonsment
statements alter the intent of an arithmetic expr ssien

or assignment. For example, consider:

A(I) = X + (I = I + 1)
If the intention is for A(I) to be Interpreted in

terms of the old value of "I", one can emit a

PRTECT of the node representing the first "I" beoro

Hemitting outputs which cause the computation of the

righthand side of the assignment. The 30 will tho

cause the old "I" to be saved before it Is over-

written and reference the saved value when treating

A(I).

IXECUT - This provides a mechanism for ordering the run-time

execution of an arbitrary, Independent, Nhand-ooded*

-7-

[I
program. It has one argument, the name of the

program. The Bootstrap assigns integers to the

identifiers which appear as arguments of EXECUT in

[order of first appearance starting with one. At run

time the EXECUT is interpreted as a jump through

H switch block to the n-th independent algorithm, where

n was the integer assigned. It is possible to force

I, the numbers assigned either by giving the desired
integer explicitly as the argument to EXECUT or

(better) by initializing the table (EXTPGM) in which

such identifiers are looked up and (appended if not

already there) by the Bootstrap. If it is desired to

provide arguments to an independent algorithm, they

can be placed on SHPIST by appropriate use of

PUTVLA, PUTVLB, and PUTNAM.

I I

-8

V

B.4.

Relative Tree Names

fA "relative tree name" is of one of four kinds: either the fixed

string "SELF" (meaning the node currently under consideration), the fixed

string "NXTREE" (meaning the trunk of the next tree generated over), a

"tree walk", or a tree walk bracketed by "LAT(" and ")".

A tree walk is a sequence of "steps" (encoding requirements

impose a practical limit on the number: say, seven), separated byH "*". Steps are chosen from the set:

FATHER - father

RTSIB - right sibling

LFTSIB - left sibling

SONIST - rightmost (last) son

TRUE - true field

FALSE - false fieldth
SONn- n son, where lanat 10

Example:

SONl*SON2

FATHER * RTSIB*TRU E*RTSIB

The interpretation of such a name is that (starting at the node

under consideration) one executes the steps in order, yielding as value

an OUTREE line number. If at any point a step is ill-defined (walks

I ioff the tree) , the value of the name is set to zero.

If the walk was bracketed by "LAST(" and ")" and also walked

off the tree, then the value is set to the line number resulting from the
last step which stayed on the tree.

I

B.5.

I- Samole Translater DescriDtion

As a brief example, let us define an extremely simple language

translation in B14FGSL:

BNF.•

IDENT = // TLUA1, INVOKE/
TERM IDENT / TERM MULOP IDENT///
AREX = TERM / AREX ADOP TERM//I

ADOP =$+/ $-/ F1XIST/
MULOP = $*/ $$/ / FIXIST/

ASGST = IDENT $ = AREX$. // GENRAT/

/ BNF

GSL..

IF ASGST, $ SON3 $ OUTPUT (STORE, SONI, SON3).

IF AREX AND SELF IS HARD, $ SONI $ MINE.

IF TERM AND SELF IS HARD, $SONI $MINE $LFTSIB $RTSIB*RTSIR.

. IF TERM, $LFTSIB $RTSIB*RTSIB.
IF IDENT, $LFTSIB $RTSIB*RTSIB.

IF ADOP, $OUTPUT (ADDSUB, NR(SELF), IAST (LFTSIB*LFTSIB),

RTSIB) $RTSIB*RTSIB*RTSIB.
IF MULOP, $ OUTPUT (MPYDIV, NR(SELF), LAST (LFTSIB*LFTSIB),

RTSIB) $RTSIB*RTSIB*RTSIB.
/GSL

If the above deck is input to the Bootstrap, a set of tables for the
Translater will be generated. When the Translater, with that set of tables

and an appropriate identifier scanner, receives as input:

HENRY = A*B+C-D*E/F+G.

it will effectively output to the ISO the following:

1. MPYDIV, 0, A, B"ii2. ADDSUB, 0, line 1, C
3. MPYDIV, 0, D, E

4. MPYDIV, 1, line 3, F
5. ADDSUB, 1, line 2, line 4
6. ADDSUB, 0, line 5, G
7. STORE, HENRY, line 6

follws:The OUTREE which is constructed by the analyzer will look as

-2-

~., I

III
I +

I 0

I

I
)rOI

I r:).

>4
0

Eu IFl
*6i

I
II -3-

Ii

I

B.S.

Ii[Formal Description of BNFGSL

This section contains a description of the translation of

BNFGSL written in BNFGSL.

The syntax-descriptive section of this translation description

should be comprehensible by reference to the previous discussion of

BNFGSL. However, it is difficult to understand the motivation for the

jmacros output to the Bootstrap ISO without at least a sketchy idea of

what the latter algorithm does with them.

In brief, each macro emitted to the Bootstrap ISO corresponds

to a line of one of the seven prototype control tables being constructed.

These seven tables are prototypes of the following; respectively:
1. ACTION

2. GVBLST

3. PRDCAT

4. PREDPT

5. SEQIST

6. SYNPT

V 7. SYNTRE

The literal symbol table of the bootstrap compilation becomes the

eighth control table, SSLIST.

The first variable of call of the OUTPUT imperative names, not

a macro, but the number (I through 7) of that prototype table of which

this call provides a line. the remaining variables of call correspond to

the line items of the line and require, for their completer understanding,

a discussion of the tables of the translater far too detailed for the scope

of this report. It should be noted however (by reference to the picture

of table organization in A. 3.) that several tables contain line. items

which point to other tables. The seven line counters of the prototype

tables being built supoly the numbers of their "first-unfilled" ' as to

the Bootstrap ISO and thus this sort of item need never be given explicitly.

I

F

BNF..
SYNTYP = /1TLUAI
INTGER = IITLUA.2IB SYMSTG = //TLUA3/
LNGDEF = $BNF.. TYPIST $$/BNF //GENRAT/

I [J TYPIST =TYPDEFITYPIST TYPDEFI/
TYPDEF =SYNTYP $ = FSTPRT SECPRT // GENRAT/

ri FSTPRT =FORMST $$/$/ /$$/$/ /
SECPRT = TAGIST $$/ /$$/ //
TAGLST = TAG/TA$IST $, TAGV//

TAG = $INVOKE/I$ASSIGN/$GENRATI$ METAGNI
$INHIBT/$FIXLST/$TLUA INTGERI$NULTYI/

FORMST = FORM/FORMST $$/ FORM//
FORM =COMP / FORM COMPI/
COMP =SYNTYP/SYMSTGII

IDENT = ITLUA1 /11GENDEF =$GSL..- GNSIST $GL/
GNSIST = GENSTA/GNSIST GENSTA.!!11 GENSTA = CND1TN $, SEQIST $. // GENRAT/
CNDITN = KIND/KIND PRDIST //
KIND = $IF SYNTYP/$IF SYMSTG //

I PRDIST =$AND PREDCTIPRDIST $AND PREDCTIII
PREDOT ZETTVPS/SMS/PTTNRS/YTT/

I I ZERTST =TRENAM EQREL ZERO//
ZERO = $0 //IiSYNTST =TRENAM COPULA YTP/
SYMTST =TRENAM COPULA SYMSTGII/

ti CPXTST =TRENAM $IS HRDNES //
H HRDNES =$EASY /$HARD// FDCIST/

NRTST = NRTRE $= INTGER I
I NRTRE = $NR(TRENAM O)NI

-2-

r
VTPTST = VTPTRE $= INTGER /[VTPTRE = $VTYP (TRENAM $) /
EQREL =$= / $ X= IIFIXLST/Fl COPULA $= / $IS IXI
SEQIST =$$$ SEQUEL/ SEQIST $$$ SEQUEL/
SEQUEL =TRENAM / ACTIST //
ACTLST =ACT / ACTIST ACT //
ACT = IMPER / IMPER $(VEL]ST $)//1 IMPER =$OUTPUT/ $LABEL/ $MINE/ $SET/ $COPY,/
$ PUTVIA/ $ PUT VLB/$EXEC UT/s OTTPOT/$ BEGRTN/[1$ENDRTN/$ BEGRGN/$ENDRGN/$BELP$NLP
$ BEGC ND/$ENDCND /$PUTNAM/$ PRTECT// FIXI.ST/H VBIST = VBL/VBLIST $, VBL //
VBL = TRENAM / INTGER/ SETTEE / NRTRE/IDENT///1SETTEE = $TRUTH/$FPAIS TY/$.TRUTAB// FIXIST/
TRENAM = TREWLK /$LAST (TREWLK$/

$SELF / $NXTREE///Ii TREWLK = STEP/ TREWLK $* STEP//
I STEP = $FATHER/$ LFTSIBMARTS IB/$SONT/

$TRUE/$FAISE/$SATLPT/$SON1 /$S0N2/
$S0N3 /$S 0N4 /$S ONS /$S 0N6/$S 0N7/
$S0N8/$SON9/$SON1O// FD(LST/

XLATER =LNGDEF GENDEF/
/BNF

-3-

GSL-.

IF TYPDEr, $LABEL (SONI) PUTVLA(6)

$SON4 $PTJTVLB(30) OUTPOT $SON3.

IF SECPRT AND SON2 :=0, $ FATHER.

IF SECPRT, $SON1*SON1.

IF TAG AND SON2 =0, $PUTVLB (NR(SON1))
$RTSIB * RTSIB.

IF TAG, $PTJTVLB (NR(SONl)) PUTVLB (NR(SON2))
$RTSIB * RTSIB.

IF FSTPRT AND SON2 x= 0, $SONI * SONI.

IF FORM, $SON1 $RTSIB * RTSIB.

IF COMP AND SONi IS SYNTYP AND
LrTSIB = 0, $ OUTPUT (7, 0, NR(SONI),

IT FATHER * RTSIB * RTSIB, RTSIB)
$RTSIB.

IF COMP AND SONi IS SYNTYP,

1I~ $OUTPUT (7, 0, NR(SON1), 0, RTSIB)

$RTSIB.

IF COMP AND LFTSIB =:0,

$OUTPUT (7, 1, NR(SON1), FATHER * RTSIB*

RTSIB, RTSIB) $RTSIB.

IF COMP, $OUTPUT (7, 1, NR(SONl), 0, RTSIB)

$RTS lB.

IF GENSTA, $ SONi $SON3.

IF CNDITN, $SON1 $SON2 $OUTPUT (3, 0).

IF KIND AND SON2 =SYNTYP,

$OUTPUT (4, NR(SON2)).

IF KIND, $OUTPUT (4, 0) OUTPUT (3, 3, 0, NR(SON2)).

IF PRDLST, $SON2.
IF PREDOT AND SONI = ZERTST,

$ SONI SONI $OUTPUT (3, 1, NR(SONI SON2))

$R rSIB *RTSIB.

-4

IF PREDCT AND SOMi = SYNTST, $SON1 *SON1

$OUTPUT (3, 2, NR (SONI * SON3)) $RTSIB * RTSIB.

iiIF PREDCT AND SONi = SYMTST, $SON1 * SONI

If$OUTPUT (3, 3, NR(SON1 * SON3)) $RTSIB * RTSIB.

IF PREDICT AND SONI = CPXTST, $SON1 * SOMi

$OUTPUT (3, 4, NR(SON1 * SON3)) $RTSIB * RTSIB.

IF PREDCT AND SONI- NRTST, $SON1 * SOMi SON2

Dr$OUTPUT (3, 5, NR (SONI * SON3)) $RTSIB *RTSIB.

IF PREDCT, $SON1 * SONI * SON2

$OUTPUT (3, 6, NR (SON1 *. S0N3)) $RTSIB *RTSIB.

IF SEQLST, $SON2 $OUTPtTT (5, 2).

ISEQUEL AND SONI IS TRENAM,

$SONl $OUTPUT (5, 0) $RTSIB * RTSIB.

IF SEQUEL, $OUTPUT (5, 1) $SON1 $RTSIB * RTSIB.

IF ACTIJST, $ SONI $OUTPUT (1, 30).

IF ACT, $OUTPUT (1, NR(SON1)) $S0N3
$RTSIB.

IF VBLIST, $SON1 $OUTPUT (2, 0).

IF VBL AND SONi1 = INTGER,

$OUTPUT (2, 1, NR(SON1)) $RTSIB * RTSIB.
IF VBL AND SONI TRENAM AND

HLFTSIB * LFTSIB *SONI= SETTEE, $LFTSIB*

LFTSIB.

IF VBL AND SONI TRENAM, $SONI

$OUTPUT (2, 2) $RTSIB * RTSIB.

IF VBL AND SONI = NRTRE, $SON1 *SON2

$OUTPUT (2, 4) $RTSIB * RTSIB.

IF VBL AND SONI = WDENT, $OUTPUT (2, 3, NR (SONI))

$RTSIB * RTSIB.

IF VBL AND SONI = SETTEE, $RTSIB*

II RTSIB * SONI $OUTPUT (2, 5, NR(SON)).

IF TRENAM AND SON2 x= 0, $PUTVLA (1)

Ii $SON2 $EXECUT (FILTRE).

H5

IF TRENAM AND SONI = $NXTREE , $PUTVLA (3)
EXECUT (FILTRE).

IF TR.ENAM, $PUTVLA (0) $SON1 $EXECUT (FILTRE).

I" IF TREWLK, $S.ON1 $PUTVLB(30).
IF STEP, $PUTVLB (NR(SELF)) $RTSIB *RTSIB.

GSL

F

-6-

AiPend,.x I

1To assist the reader in visualizing the syntactic structure

of BNFGSL, we give here a pictorial representation of that syntax

r

[1
I[

T

I LEGEND

Enclosed in this symbol is a syntactic
type or a symbol string.

This symbol contains the name of 4 tagcii)involved with a syntactic type.

This symbol contains an optional syntactic

<C type or symbol string.

Lines or rays emanating from a single point
denote sequential components. Thus,

/ Q (T A Z Q T A are the sequential components of E.

The circle denotes an OR Junction. Here
we have A or B.

[- This symbol denotes the beginning of a

symbol string.

-2-

IITE

TYPDEF TYPDEF TYPDEF YPDEF LTYPDEF 11

SYNTYP $=FSTPRT
SECPRT GENRAT

\UII OMS AGS

TLA
1.TA

SyST

GENSTA GENSTA GNTA'

iiCNDITN $1 ag s ENA

or
~ $IF YNTYP $AD PREDCT $A do.

$IF SYMSTG -

* I TLUA3

-4-

[1 (page 6)

IiVTYP(rae$ LA
HG

$=FDCLST TLUA3

-5-

l

$N((page 6) $ LA

($IS
H -6-

IRNA
Ik K.VK

I:SI

I -7-

$ SEQU~EL

TRTNAMI (page 6)

UTBB
$LABEL EGRTN page 6

$ MINE ENDRT NR TE

$PUTVLABEGONP

$PUTVLB EGNDor

$EXECU.

-8-

ADDendix IT

The technique described in this report has been tested
experimentally be defining the translation of the algebraic language
L * (into IBM 7090) in. BNFGSL and bootstrapping an Lo Translater into
existence. To give some notion of the appearance of the BNFGSL for
a conventional algebraic language, we append a listing of the cards which

fed that bootstrap.

Obviously, the named "break-out" codes (arguments of EXECUT)

I] and the VARITY codes used in VTYP tests are not self-explanatory, but
much of the deck may be readable, and the approximate level of effort

1 I involved in preparing a new BNFGSL deck may be estimated.

LI

j*G. F. Leonard, "Introduction to the CL-I Programming System", with
T. E. Cheatham, Jr., etal; Technical Operations, Inc., TR-59-6,
January, 1960.!I

I'

IHIS IS A CAPC LIS1ItIG EV C-E-I-P

AiJCF= 14I5-//Fl.XLSI91NVCKE/ -

II ,CF:IE/tGR!L'/ILE$R/jF IXLS/

Li ~VAR'ELE = JUENT Vt SLIESCR S) / ItENII//
S~eCR ASPHR/ ARi'X I

AR."X= TEPY/I ArCC IFRP./ AREX AfCPF TERP//

IEHP=FAClCP/IEI'O I.LCP FACICR//I *..

fAC[CR=VAkLLE/IhIGEP/SI APEX $M/(ASSPFiP S I/11,
I' ASSPH-R=LFTL)i APEX/Il

F LP1ST2LPT/LPTtI.l 1Ff/Il
I' 1PT=VAPOLE 1=///

IFPFR=1FCLS LNCPt'R I.///
IFCLS z F eCGLEX It ///
ECCLEXzE(CIRMf/BCrLEX SCR BCO*iRI///
PC{IROP = CCFAC/F3C[TRM SANC ECCFAC/I//

VUKCP#R=G(SLe/PI.NP~pi If'I
PUNPI-R-SLE S.1 If SLe/PUNPHR SUE S./PLNFIPP IFSUEF///f ~SUe = KCENTISI1 PHRASE / PhRASE//ASSIG /
PHRASE = ShAPFIEXPFR/CCPHR/EULNF.-E/A55i1R/CCFhP/ICE7T//
ILLKEG = $A'CT ICENI/i/
CCKPI-Rz SCCPECI TCENI $1C, ICEPO//

GCPhP=ICCPtRT ir ENT///

IULIS) - IF.C(UIF/IC1T IlCCI.P//I
1LCCP ICEAI /JEi/
JFEUe= IFPI-P/ ICENI III (FPFP//IthJe1/
STATE = IFSLE/fEC.LAR/Sl.E $.I/CEK-RAII
LCCCCE=SlTrE/LCCCCF STATI//
LCEY = $F(:hLC$/ LCCU(E SS/FINCLC///
CUR CEC = SUUTiN ICENT//PErACK/
CECLAR z IELITI, / IPLCEI. / RCNCCL / R7K)-.EC I ERAlI
NU L 1. - t/NILL IYF/
C ICOPM- SCICHA1 S1 (NIMt;(1) II (.CAlIII

PfVC= ICENf SPIIk AU-SIF flS//lEIAGN/
1131. VEr V SIAELE II:EKI INIG, R ALUITF M1 lEECIrK//PIlACKN
1ELJIff =$ SIEM ILENI INIC R (NICER ITGER 1SS/FPACiI
TP.LITL = IELITY SENZ/TPLlTP TBLIJL///
113LEEC = TeITEC IL/j/1-
PGNCCL = SFECRCN / SENCRGN // F IXIST, OFF I ACK

IF 5UE!.P, SSUNkI SPUIVLAINR F 11IELftI f1'1)
EXELLI(I(I (PI) RLIVLA MPYC I V) FUIVIP fI I)
PL IVL (SCNI) ExEcki f ;vcccN I upC I FEcu1I(w0ClAj-

i.UIP I SLF1SJIR SPUrVLO(SELF) PltW --
It f 15 1 IF X ECUI I F P CN) E XEC T INRIB ICN).

If '- IL Ii At'L SCNl"'=C,.fSCNI'.'

If IFSLe,S LAyCLL(SONI) ISN3.
IF IFPIR ANIY NR(SCNl*SCN2)-"* 1 AFKC SCk~ISCt2SCN1.SCN2 X= 0,

I S01I SCN2*.Sfl S UrtrC*N(
I t f;?,V-Vik ll,FjCtNf $SnN2*SrNI S-,j C

'IA 110t H A I IWxs p i s s c'K2 .

IF CCTtjANC LFrISIE=0,SC0Py(7kT.,Lt.Aj'.EPjL
4 SEIHALSIYoRTSIE-R'~1E1) ISMc te[GCNE

SR1SI84PTSIE.
I F 8O1CRP AIc. Risie=0,sccpy(7RU'TABPFA'TIER).

SSCNI SENDCKC.

IF~R~- TcFckrLiIz F.-c
CCP~wfvICP.YTRUTHAWER FAjN2C,4, S 1.fe

$R1S EN .1T :V3.T

jIF OCCFAC AKE RTSIE = 0 ANC NR(FATHER*FAWHER) I
tj.AJWC f4ThER*FAJI-EIR.FATlER I5,IFCLS,

$CEFY(TRUrAE, FATHER) $ SCN2 S SOKI

IF OCCFR' ANC LF'TSI3:0,SCCPY(IRLIAB,FAWERR :.
SS(N 1.

~~IT

iF ARE)' AKE SELF IS I-AR-E ANC FAll-ER IS BCCFRY , S(NI I VINE
*CU7FU V(fP FL A Tr o' t SELF, C FAlIER*lRLE,FA lWER bFALSF)

IF ARE)' ANC SELF IS hARESSON1 $P'INE.
IF ARE)' ANr FATHE~R IS OCCPRM , S SCNI........

1< *a. tj, - .(RE LATE, 1, SCNI,v 0,t 4XVE1

I F PUAF~-t0I
I F, SUe A'NC SCNi=0p$SCNI.5OCN1
IF SUEsSLAEEL(SNI) SSCN3*SCNI STI.ie

SWPl-R.,SSCN3 SCUTPUT (S TCH,SCN 3,NVhLii

M~ ICue.,$CUTPurI(SWrRA,S(N,.,) SRISIE.
I F EXPI-R, iPEGPCK CLTPUIfEXIf ENCRG.

I F Gf;PIRfCUTPLFTRANS,SCN2).
IF GCSLtI ANC SCN2 X- 0, SLABEL(SCN1) SSC1Y3.
IF GCSLI3, $SCNI.
M$ ASSF40II ,-SSON2 SP'WI-' *Aomo 4

IF LPILSISSCNI.
IF IPT, SSCNI IRTSIe.
IF VARELE ANC SCN3=C ANC VTYP(SCR1)=3 AN[

7 FATHER I'S LPT, $CUTPUT(STORE,SCIFAT-P.FAT.ERoiRISI1!3.
IF VAReIE ANC Sr'N3aC ANtC VTYP(SCNI)z, ONE

.r a of.rf% f rI' a * f, rtC., nos or. 1,D' *efbe I #*tql. %o 8 1 flit 1

II TT I;4"1t A'i\ C -1 1 Y ' i
f J t $to L L3(I I S CKI SPO YVL A IPLrT) *SC(N-

P!, F ~, SCN 3 X=O, SSUN3 SCLTFCT.

jV VM LE WM. FATH.R IS LPT, SCL'TPLT(SICRE*SCNI,
1 I kF Et Qxkl).

IF St ANE RISHL [IS MUSCP ANEC FATIlER*tTl-ER 15 FACTCP,F 1SPLI LE(C) SRTS1iJ $PUTVLA(C-ETI SRTSIE IRISIE.
I F $(ANE RISIL' IS SUBSCA9

IPLTVLEiI) SHTSIP $PTVLA(PUT) SPISIEF t. L(FIP*AFR*AH aI I $RISIE.
IIf) tKI A VrvP(LFlIEL.FSIA'LFIlSe)=3,

$Pi rVLf(c) EXECLT(ACAVCN) ILFISII3.
IF t) ANE VIYP(L[SIE*LFJSIe*LF1SIe)='.,

iIPL(VLiM) PUTVLE(C) EXECUT(ADIVCN) $LFISIEs

IF TERP ANC SELF I I-ARE9,SCNI SPIKE $IFISIB

I F If RP , SLKt i.S1 SI SlItaRiI11.
I f Al"ilF ANC L.FISIezC, SRfSIB SCU!PL I(SIGt,NP (SELF) vPISIE)

RT1IIP) lPTrAPT:SI8*RTSIe.fl IF FAC10P ANE SELF IS FiAI~r,SSC\l SPVINE
lLffSIF SRTSIBaRTSIE.Y

IF FiACICR91SCfNI SLFTSIB SRTS[E.II1SI8.
IF MLL(PSCUTPLrY(MPYcIV,NR(SELF) ,LAST(LFISIEu *

LFISIH9,FlrSIfl $ Rrs(6.RTS[F*RTSIP..
IF !LE9 I ANI VTYP(SEI.F)=7v %CUTP T(FUIICPFELF).

IF I111~ Al~l. FAIP IS ECCPHPw, SF&JPUT(RELVIFI,
FL'JI.I lAtfIau1HIEvFAI-Ek.F/fit S).

11 If;EhI ANC FPIhLk IS VARIeLE, SPUIVIA(SELF) DECUI(N11TPI)
PUIVLA(IOCATE)JOSAThER $EflECLT(SKYP) PL1VIEMI

ji PLIVLe(('J FXECLl(A17IVCNI r.UAFCI IFATFFP SPLTBLP(SE1F)

4F E-CU # (OCCON ~ A 1IER $ E ,CU T'F'R~T E -C- 4CjW

'CE1,T1 3LLTPUr(STCRE,SELF,1).

I F CURE EC, 9 PUTVLA (NR (SCN2) EXECUT PII P EE FMY177.
I F I'EL1ItPPUVfVLA(NbP(SfON2) I PU[IVLe(NPMKCr3))

I F TSL EC MI~ S0N4*SCNI x'GICeP-,

PUIVIE(NRf'SCN4nSCN1 .SO
I F [P~L-EC.

SPLIVLA'(NR(SCN2)) PUTVLB(S) PUTVLeON(5I3) r
PU7VLE(O) EXECUT(TABOLIC).

IF RC-NCCL AKIO .R-(SU-Lf) t~fpft 6 N
IF R G N EtC4-, S, CRG
IF RINI-Et A , S.lN1-SC.t ;I

SPLTVLA(NR(SCNI)) PL'rVLO(2)

IF R1U-F, XEU(IThCE)
SPL-TVLA(NR(SlNI))PLTVLB(11 PU1VLe(C) EEUg3E)

/GSL

YCVP CARC TtIAL 15 lei

'440

